Participation of 3'-to-5' exoribonucleases in the turnover of Bacillus subtilis mRNA.
نویسندگان
چکیده
Four 3'-to-5' exoribonucleases have been identified in Bacillus subtilis: polynucleotide phosphorylase (PNPase), RNase R, RNase PH, and YhaM. Mutant strains were constructed that were lacking PNPase and one or more of the other three ribonucleases or that had PNPase alone. Analysis of the decay of mRNA encoded by seven small, monocistronic genes showed that PNPase was the major enzyme involved in mRNA turnover. Significant levels of decay intermediates, whose 5' ends were at the transcriptional start site and whose 3' ends were at various positions in the coding sequence, were detected only when PNPase was absent. A detailed analysis of rpsO mRNA decay showed that decay intermediates accumulated as the result of a block to 3'-to-5' processivity at the base of stem-loop structures. When RNase R alone was present, it was also capable of degrading mRNA, showing the involvement of this exonuclease in mRNA turnover. The degradative activity of RNase R was impaired when RNase PH or YhaM was also present. Extrapolation from the seven genes examined suggested that a large number of mRNA fragments was present in the PNPase-deficient mutant. Maintenance of the free ribosome pool in this strain would require a high level of activity on the part of the tmRNA trans translation system. A threefold increase in the level of peptide tagging was observed in the PNPase-deficient strain, and selective pressure for increased tmRNA activity was indicated by the emergence of mutant strains with elevated tmRNA transcription.
منابع مشابه
Bacillus subtilis YhaM, a member of a new family of 3'-to-5' exonucleases in gram-positive bacteria.
A strain of Bacillus subtilis lacking two 3'-to-5' exoribonucleases, polynucleotide phosphorylase (PNPase) and RNase R, was used to purify another 3'-to-5' exoribonuclease, which is encoded by the yhaM gene. YhaM was active in the presence of Mn(2+) (or Co(2+)), was inactive in the presence of Mg(2+), and could also degrade single-stranded DNA. The half-life of bulk mRNA in a mutant lacking PNP...
متن کاملRNA processing and degradation in Bacillus subtilis.
This review focuses on the enzymes and pathways of RNA processing and degradation in Bacillus subtilis, and compares them to those of its gram-negative counterpart, Escherichia coli. A comparison of the genomes from the two organisms reveals that B. subtilis has a very different selection of RNases available for RNA maturation. Of 17 characterized ribonuclease activities thus far identified in ...
متن کاملBacillus subtilis RNA deprotection enzyme RppH recognizes guanosine in the second position of its substrates.
The initiation of mRNA degradation often requires deprotection of its 5' end. In eukaryotes, the 5'-methylguanosine (cap) structure is principally removed by the Nudix family decapping enzyme Dcp2, yielding a 5'-monophosphorylated RNA that is a substrate for 5' exoribonucleases. In bacteria, the 5'-triphosphate group of primary transcripts is also converted to a 5' monophosphate by a Nudix prot...
متن کاملInitiation of decay of Bacillus subtilis rpsO mRNA by endoribonuclease RNase Y.
rpsO mRNA, a small monocistronic mRNA that encodes ribosomal protein S15, was used to study aspects of mRNA decay initiation in Bacillus subtilis. Decay of rpsO mRNA in a panel of 3'-to-5' exoribonuclease mutants was analyzed using a 5'-proximal oligonucleotide probe and a series of oligonucleotide probes that were complementary to overlapping sequences starting at the 3' end. The results provi...
متن کاملLocalization of Components of the RNA-Degrading Machine in Bacillus subtilis
In bacteria, the control of mRNA stability is crucial to allow rapid adaptation to changing conditions. In most bacteria, RNA degradation is catalyzed by the RNA degradosome, a protein complex composed of endo- and exoribonucleases, RNA helicases, and accessory proteins. In the Gram-positive model organism Bacillus subtilis, the existence of a RNA degradosome assembled around the membrane-bound...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 187 8 شماره
صفحات -
تاریخ انتشار 2005